Some displayed equations and {eqnarray}s

By introducing the product topology on #math23#Rm×m×Rn×n with the induced inner product

#math24#
〈(A1, B1),(A2, B2)〉 : = 〈A1, A2〉 + 〈B1, B2〉, (3)
we calculate the Fréchet derivative of F as follows:
#math25#
F'(U, V)(H, K) = R(U, V), HΣVT + UΣKT - P(HΣVT + UΣKT)〉  
  = R(U, V), HΣVT + UΣKT (4)
  = R(U, V)T, H〉 + 〈ΣTUTR(U, V), KT〉.  

In the middle line of (#eq2.11#111>) we have used the fact that the range of R is always perpendicular to the range of P. The gradient ∇F of F, therefore, may be interpreted as the pair of matrices:

#math26#
F(U, V) = (R(U, V)T, R(U, V)T)∈Rm×m×Rn×n. (5)
Because of the product topology, we know

#math27#
#tex2html_wrap_indisplay1264#(U, V)(#tex2html_wrap_indisplay1265#(m#tex2html_wrap_indisplay1266#(n)) = #tex2html_wrap_indisplay1269#U#tex2html_wrap_indisplay1270#(m#tex2html_wrap_indisplay1273#V#tex2html_wrap_indisplay1274#(n), (6)
where #math28##tex2html_wrap_inline1278#(U, V)(#tex2html_wrap_inline1279#(m#tex2html_wrap_inline1280#(n)) stands for the tangent space to the manifold #math29##tex2html_wrap_inline1282#(m#tex2html_wrap_inline1283#(n) at #math30#(U, V)∈#tex2html_wrap_inline1285#(m#tex2html_wrap_inline1286#(n) and so on. The projection of #math31#∇F(U, V) onto #math32##tex2html_wrap_inline1291#(U, V)(#tex2html_wrap_inline1292#(m#tex2html_wrap_inline1293#(n)), therefore, is the product of the projection of the first component of #math33#∇F(U, V) onto #math34##tex2html_wrap_inline1298#U#tex2html_wrap_inline1299#(m) and the projection of the second component of #math35#∇F(U, V) onto #math36##tex2html_wrap_inline1304#V#tex2html_wrap_inline1305#(n). In particular, we claim that the projection g(U, V) of the gradient #math37#∇F(U, V) onto #math38##tex2html_wrap_inline1311#(U, V)(#tex2html_wrap_inline1312#(m#tex2html_wrap_inline1313#(n)) is given by the pair of matrices:
#math39#
g(U, V) =   #tex2html_wrap_indisplay1317##tex2html_wrap_indisplay1318#U,  
      (7)
    ;SPMnbsp;;SPMnbsp;;SPMnbsp;;SPMnbsp;#tex2html_wrap_indisplay1320##tex2html_wrap_indisplay1321#V#tex2html_wrap_indisplay1322#.  

Thus, the vector field

#math40#
#tex2html_wrap_indisplay1324# = - g(U, V) (8)
defines a steepest descent flow on the manifold #math41##tex2html_wrap_inline1326#(m#tex2html_wrap_inline1327#(n) for the objective function F(U, V).